

Professor OLAF SCHUILING in Hyderabad 2010:

Olivine

Against Climate Change and Ocean Acidification

It is better to light a candle, than to curse the darkness

Earth's CO₂ balance

Yearly natural emission:

- 2 to 2,5 billion tons
- by volcanoes and through dissociation of subducted limestones

If Earth had no effective feedback mechanism, our atmosphere would be like the one on Venus

Feedback mechanisms

- weathering of silicate rocks converts CO₂ into bicarbonate solutions
- rivers transport solutions to the oceans
- there these are stored as carbonate rocks

a smaller part is stored as organic carbon

Distribution of carbon on Earth

	Amount (x 10 ¹⁵ kg)	Relative (%)
Limestones (CaCO3)	35,000	46.6
Dolomites (CaCO3.MgCO3)	25,000	33.3
Sedimentary carbon	15,000	20
Recoverable fossil fuels	4	0.005
Oceanic CO2	42	0.056
Atmospheric CO2	3	0.004
Biomass	0.56	0.0007

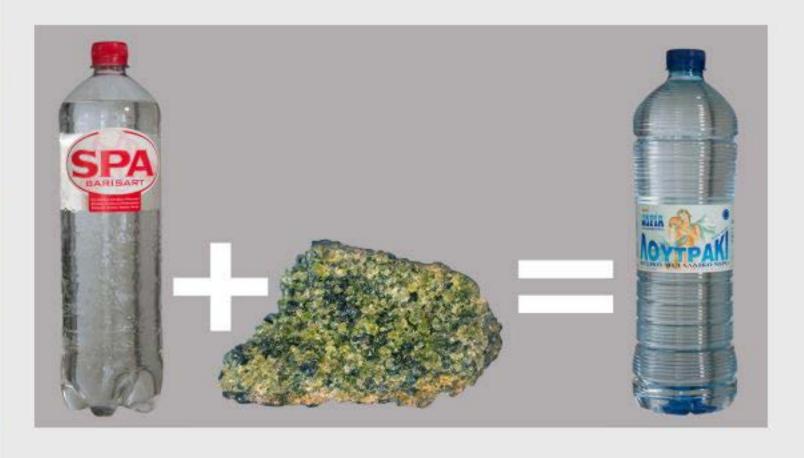
Anthropogenic emission Input from Earth's interior 0.03 / year 0.0025 / year

Sedimentary rocks

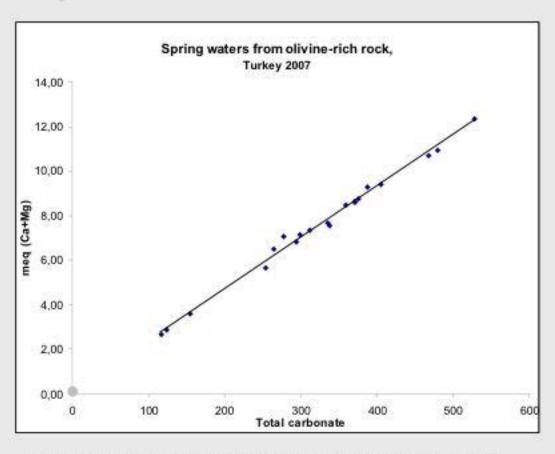
- contain 1500 times more carbon than oceans, atmosphere and biomass combined
- therefore they are the ultimate sink for CO₂

Weathering

Through weathering rocks neutralise (carbonic) acid:


$$Mg_2SiO_4 + 4 CO_2 + 4 H_2O \rightarrow 2 Mg^{2+} + 4 HCO_3^- + H_4SiO_4$$

greenhouse gas → innocuous bicarbonate ion



The proof

The proof

Concentration in meq [Ca₂⁺ + Mg₂⁺] in spring waters in dunite massifs versus total carbon as mg CO₂

Out of balance

Mankind emits ten times more CO₂ than nature Earth can't compensate this

→ CO₂ content of the atmosphere rises rapidly

Can the Earth fight back?

Natural weathering is a slow process

enhance weathering to reach a new balance!

This can be achieved by:

- mining and grinding large volumes of olivine-rich rocks
- spreading the grains in the wet tropics
- let nature do the work

Why olivine?

92% Mg₂SiO₄, 8% Fe₂SiO₄

- · most abundant silicate on earth
- deposits are large and widespread
- weathers quickly and captures CO₂

Where is it found?

Laboratory versus the real world

Laboratory: 0.2 – 0.3 micron per year

Nature: 10 – 20 microns per year

Why this discrepancy?

- symbiosis of fungi with higher plants
- fungi secrete acids
- acids dissolve minerals rapidly

Why the wet tropics?

- faster weathering
- lower wages
- usually low transport costs
- provides employment and economical growth
- large open pit mines profit: economy of scale
- mining for olivine in dunite combined with mining for ores of chromite, nickel or platinum group minerals can be economically beneficial

Costs olivine method

1 ton of olivine captures 1.25 ton of CO₂

mining, crushing and grinding
bulk rock in large open pit mines: 6 euro

average transport costs: 6 euro

→ 1 ton captured CO₂ = just below 10 euro

Costs olivine method

Yearly

To capture **all** CO₂ produced by mankind: 20 to 25 billion (7 km3) tons of olivine

→ costs: around 200 billion euro

Enhanced weathering is the most cost-effective way to counteract climate change

Carbon Capture Storage (CCS)

is 5 to 10 times more expensive and less sustainable

CCS only has a modest future in cases where:

- there is a more or less pure CO₂ source available near an abandoned gas field
- a propellant gas is needed to recover gas and oil more fully. Then CO₂ is the evident choice
- CO₂ can be injected into reactive rocks to recover heat

Limiting ecological damage

In the tropical zone the weathering crust is often mined for nickel

- continue to mine the underlying dunite rock
- no need to clear new mining sites
 - mining equipment already in place
 - trained workforce nearby
 - people keep their jobs

Conclusion: mining olivine becomes cheaper and ecologically more acceptable

Organisation

- open 30 to 50 large olivine mines in the wet tropical zone
- preferably on sites of existing nickel laterite mines
- crush and grind olivine to sizes around 100 microns
- spread within 300 km from the mine

Keeping costs low

- add olivine powder to sandstorms
- throw into flooding rivers
- use barges for transportation and spreading
- let locals use oxcarts for transportation
- mix olivine with fertilizers or pesticides

Also: olivine enriches tropical soils, especially with magnesium

To compensate effectively

Spread 0.7 mm of olivine on 10 million km² a year

Cheaper solution:

- cover 2 million km² with 3.5 mm
- another area of 2 million km² the year after
- repeat this four times
- return to the first area after 5 years

Position of India, China and Brasil

'Copenhagen' wants everyone to limit CO₂ emissions

Industrializing nations have not profited from the absence of restrictions in the past

For them emission control is unfair and not necessary

Position of India, China and Brasil

Instead of controlling their emissions they can compensate them

Means are available:

- all three have huge dunite deposits
- raw materials and work force at hand

Compensation:

- much cheaper than CCS
- sell surplus carbon credits!

India: Olivine-rich rocks

From Assam to South India

 many deposits; from chromite mines in Orissa to the Kolar and Chittadurga greenstone belts

The Deccan traps

- opportunity to inject and capture CO₂
- investigate possibility to recover heat

Kerala, Kakkaponnu District

unusual dunite: high in Mg, low Ni-content

An interesting side step: save the Maldives !?

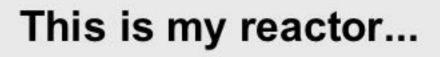
- waste sulfuric acid from industry
- large olivine deposits

1. Lift the land surface

- inject waste sulfuric acid
- → gypsum with twice the volume
- → the ground is uplifted

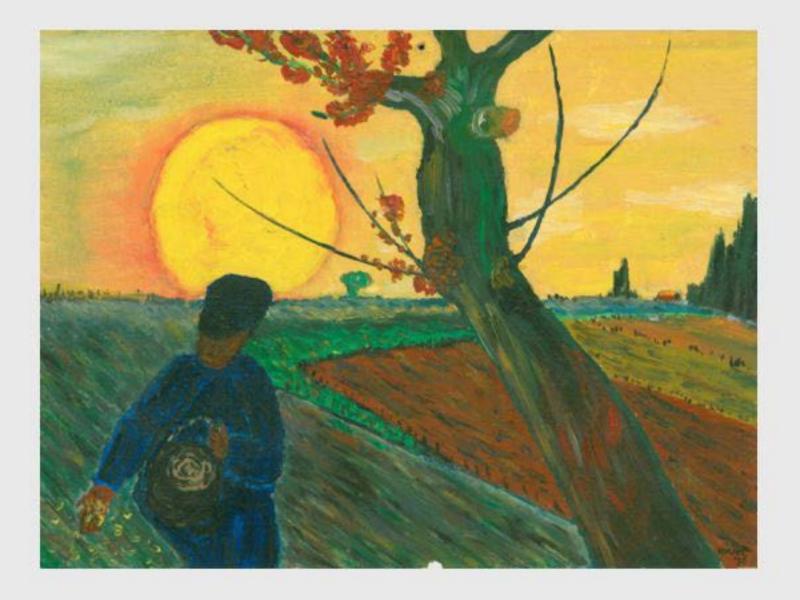
2. Construct olivine hills

- clean and healthy drinking water
- refuge during storms and flooding



Dream no small dreams, for they have no power to move the hearts of men

- Goethe



... and this is my technology!

